
Advanced Fluid Mechanics HW2 Return date: With Midterm exam

Fall Semester

1. By selecting an appropriate element and using mass balance, derive continuity equation for cylindrical coordinate

2. The stream function for a two-dimensional, nonviscouse, incompressible flow field is given by the experssion

$$\psi = -2(x - y)$$

Where the stream function has the units of ft^2/s with x and y in feet.

- a) Is the continuity equation satisfied?
- b) Is the flow field irrotational? If so, determine the corresponding velocity potential.
- c) Determine the pressure gradient in the horizontal x direction at the point x=2 ft, y=2 ft.
- 3. A certain flow field is described by this stream function where A and B are positive constants:

$$\psi = A \theta + B r \sin \theta$$

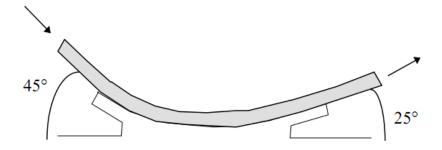
Determine the corresponding velocity potential and locate any stagnation points in this flow field.

4. A laboratory test tank contains seawater of salinity S and density ρ . Water enters the tank at conditions (S_1, ρ_1, A_1, V_1) and is assumed to mix immediately in the tank. Tank water leaves through an outlet A_2 at velocity V_2 . If salt is a 'conservative' property (neither

Advanced Fluid Mechanics HW2
Return date: With Midterm exam


Fall Semester

created nor destroyed), use the Reynolds transport theorem to find an expression for the rate of change of salt mass M_{salt} within the tank.


5. Check whether the following velocity relations satisfy the requirements for steady irrotational flow.

(i)
$$u = x + y$$
, $v = x - y$ (ii) $u = xt^2 + 2y$, $v = x^2 - yt^2$ (iii) $u = xt^2$, $v = xyt + y^2$

6. A piston compresses gas in a cylinder by moving at constant speed V, as in figure. Let the gas density and length at t=0 be ρ_o L_o , respectively. Let the gas velocity vary linearly from u=V at the piston face to u=0 at x=L. if the gas density only with time, find and expression for $\rho(t)$.

7. The figure below shows a smooth curved vane attached to a rigid foundation. The jet of water, rectangular in section, 75mm wide and 25mm thick, strike the vane with a velocity of 25m/s. Calculate the vertical and horizontal components of the force exerted on the vane and indicate in which direction these components act.

Advanced Fluid Mechanics HW2 Return date: With Midterm exam

Fall Semester

8) The velocity field for a flow is given by:

$$\mathbf{u} = \frac{-Cy}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{Cx}{\sqrt{x^2 + y^2}} \mathbf{j}$$

where C is a constant. Transform these Cartesian velocity components into cylindrical velocity components u_r and u_θ . Determine the equations for the streamlines and make a sketch.